Integrin-dependent Akt1 activation regulates PGC-1 expression and fatty acid oxidation.

نویسندگان

  • Craig C Beeson
  • Gyda C Beeson
  • Haley Buff
  • Juanita Eldridge
  • Aiguo Zhang
  • Arun Seth
  • Marina Demcheva
  • John N Vournakis
  • Robin C Muise-Helmericks
چکیده

BACKGROUND Poly-N-acetyl glucosamine nanofibers derived from a marine diatom have been used to increase cutaneous wound healing. These nanofibers exert their activity by specifically activating integrins, which makes them a useful tool for dissecting integrin-mediated pathways. We have shown that short-fiber poly-N-acetyl glucosamine nanofiber (sNAG) treatment of endothelial cells results in increased cell motility and metabolic rate in the absence of increased cell proliferation. RESULTS Using a Seahorse Bioanalyzer to measure oxygen consumption in real time, we show that sNAG treatment increases oxygen consumption rates, correlated with an integrin-dependent activation of Akt1. Akt1 activation leads to an increase in the expression of the transcriptional coactivator, peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α). This is not due to increased mitochondrial biogenesis, but is associated with an increase in the expression of pyruvate dehydrogenase kinase 4 (PDK4), suggesting regulation of fatty acid oxidation. Blockade of fatty acid oxidation with etomoxir, an O-carnitine palmitoyltransferase-1 inhibitor, blocks the sNAG-dependent increased oxygen consumption. (3)H-palmitate uptake experiments indicate a PDK4-dependent increase in fatty acid oxidation, which is required for nanofiber-induced cell motility. CONCLUSIONS Our findings imply a linear pathway whereby an integrin-dependent activation of Akt1 leads to increased PGC-1α and PDK4 expression resulting in increased energy production by fatty acid oxidation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PPARδ Agonism Activates Fatty Acid Oxidation via PGC-1α but Does Not Increase Mitochondrial Gene Expression and Function

PPARdelta (peroxisome proliferator-activated receptor delta) is a regulator of lipid metabolism and has been shown to induce fatty acid oxidation (FAO). PPARdelta transgenic and knock-out mice indicate an involvement of PPARdelta in regulating mitochondrial biogenesis and oxidative capacity; however, the precise mechanisms by which PPARdelta regulates these pathways in skeletal muscle remain un...

متن کامل

Regulation of peroxisome proliferator-activated receptor coactivator 1 (PGC-1 ) and mitochondrial function by MEF2 and HDAC5

The myocyte enhancer factor-2 (MEF2) transcription factor regulates muscle development and calcium-dependent gene expression. MEF2 activity is repressed by class II histone deacetylases (HDACs), which dissociate from MEF2 when phosphorylated on two serine residues in response to calcium signaling. To explore the potential importance of MEF2 HDAC interactions in the heart, we generated transgeni...

متن کامل

ATGL-Catalyzed Lipolysis Regulates SIRT1 to Control PGC-1α/PPAR-α Signaling

Sirtuin 1 (SIRT1), an NAD(+)-dependent protein deacetylase, regulates a host of target proteins, including peroxisome proliferator-activated receptor (PPAR)-γ coactivator-1α (PGC-1α), a transcriptional coregulator that binds to numerous transcription factors in response to deacetylation to promote mitochondrial biogenesis and oxidative metabolism. Our laboratory and others have shown that adipo...

متن کامل

Myc controls transcriptional regulation of cardiac metabolism and mitochondrial biogenesis in response to pathological stress in mice.

In the adult heart, regulation of fatty acid oxidation and mitochondrial genes is controlled by the PPARgamma coactivator-1 (PGC-1) family of transcriptional coactivators. However, in response to pathological stressors such as hemodynamic load or ischemia, cardiac myocytes downregulate PGC-1 activity and fatty acid oxidation genes in preference for glucose metabolism pathways. Interestingly, de...

متن کامل

Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1alpha.

In mammals, maintenance of energy and nutrient homeostasis during food deprivation is accomplished through an increase in mitochondrial fatty acid oxidation in peripheral tissues. An important component that drives this cellular oxidative process is the transcriptional coactivator PGC-1alpha. Here, we show that fasting induced PGC-1alpha deacetylation in skeletal muscle and that SIRT1 deacetyla...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of vascular research

دوره 49 2  شماره 

صفحات  -

تاریخ انتشار 2012